Unit-I
Computer Codes, Gates and Boolean Algebra

In the coding, when numbers, letters or words are represented by a specific group of symbols,
it is said that the number, letter or word is being encoded. The group of symbols is called as a
code. The digital data is represented, stored and transmitted as group of binary bits. This
group is also called as binary code. The binary code is represented by the number as well as
alphanumeric letter.

Advantages of Binary Code
Following is the list of advantages that binary code offers.

e Binary codes are suitable for the computer applications.

o Binary codes are suitable for the digital communications.

« Binary codes make the analysis and designing of digital circuits if we use the binary
codes.

e Since only 0 & 1 are being used, implementation becomes easy.

Classification of binary codes
The codes are broadly categorized into following four categories.

Weighted Codes
Non-Weighted Codes
Binary Coded Decimal Code
Alphanumeric Codes

Error Detecting Codes

Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle.
Each position of the number represents a specific weight. Several systems of the codes are
used to express the decimal digits 0 through 9. In these codes each decimal digit is
represented by a group of four bits.

Decimal

Positional ¢ &
weights ——> 8+4+2+1 8+4+2+1
Code ioo1o0 | 0100

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-
weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express
decimal numbers. The Excess-3 code words are derived from the 8421 BCD code words
adding (0011)2 or (3)10 to each code word in 8421. The excess-3 codes are obtained as
follows —

Add
Decimal Number ———— 8421 BCD —— Excess-3
0011
Example
Decimal BCD Excess-3
8 4 2 1 BCD + 0011
0 0 0 0 O @ 0 Al 4
1 (2 W B 0 1 0 0O
2 0 0 1 0 0 1T 0 %
3 0 0 1 ¥ g 3 4 0
4 0 1 0 O o W L s
5 01 0 1 1 0 0 O
6 O 1 3 0 1 0 0 1
7 G 1.3 1 1 0150
8 i 0 0 O 1000 =1 4
9 0 0 & 1 1 0 0
Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific
weights assigned to the bit position. It has a very special feature that, only one bit will change
each time the decimal number is incremented as shown in fig. As only one bit changes at a
time, the gray code is called as a unit distance code. The gray code is a cyclic code. Gray
code cannot be used for arithmetic operation.

Decimal BCD Gray
0 0 0 0O 0 0 0 O
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0O 2 1 0 0 1 0
4 01 0 O 01 1 0
5 9 1 0 1 g = 1 3
6 01 1 0 01 0 1
7 0 3 1:- 1 01 0 0
8 10 0 0 1 -1 O 0
9 & I 0 L ¢ s g IS DR o T

Application of Gray code

Gray code is popularly used in the shaft position encoders.

e A shaft position encoder produces a code word which represents the angular position
of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to
express each of the decimal digits with a binary code. In the BCD, with four bits we can
represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used
(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Decimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 | 0001 | 0010 | 0011 | 0100 0101 | 0110 | 0111 | 1000 | 1001

Advantages of BCD Codes

e Itis very similar to decimal system.
e We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

« The addition and subtraction of BCD have different rules.

e The BCD arithmetic is little more complicated.

e BCD needs more number of bits than binary to represent the decimal number. So
BCD is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0" or '1'. But this
is not enough for communication between two computers because there we need many more
symbols for communication. These symbols are required to represent 26 alphabets with
capital and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters.
Mostly such codes also represent other characters such as symbol and various instructions
necessary for conveying information. An alphanumeric code should at least represent 10
digits and 26 letters of alphabet i.e. total 36 items. The following two alphanumeric codes are
very commonly used for the data representation.

e American Standard Code for Information Interchange (ASCII).
o Extended Binary Coded Decimal Interchange Code (EBCDIC).

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly
used worldwide while EBCDIC is used primarily in large IBM computers.

What is Error?

Error is a condition when the output information does not match with the input information.
During transmission, digital signals suffer from noise that can introduce errors in the binary

bits travelling from one system to other. That means a 0 bit may change to 1 or a 1 bit may
change to 0.

Binary signal

noise

Z 7
— [T a0
Yy .

Error-Detecting codes

Computer 2

A

Whenever a message is transmitted, it may get scrambled by noise or data may get corrupted.
To avoid this, we use error-detecting codes which are additional data added to a given digital
message to help us detect if an error occurred during transmission of the message. A simple
example of error-detecting code is parity check.

Error-Correcting codes

Along with error-detecting code, we can also pass some data to figure out the original
message from the corrupt message that we received. This type of code is called an error-
correcting code. Error-correcting codes also deploy the same strategy as error-detecting codes
but additionally, such codes also detect the exact location of the corrupt bit.

In error-correcting codes, parity check has a simple way to detect errors along with a
sophisticated mechanism to determine the corrupt bit location. Once the corrupt bit is located,
its value is reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the data bits at the time of
transmission.

o The additional bits are called parity bits. They allow detection or correction of the
errors.
o The data bits along with the parity bits form a code word.

Parity Checking of Error Detection
It is the simplest technique for detecting and correcting errors. The MSB of an 8-bits word is

used as the parity bit and the remaining 7 bits are used as data or message bits. The parity of
8-bits transmitted word can be either even parity or odd parity.

MSB LSB

P do | d5 | d4 | d3 | d2 | d1| dO

Paril"cy B

bit 7 data bits

Even parity -- Even parity means the number of 1's in the given word including the parity bit
should be even (2,4,6,....).

Odd parity -- Odd parity means the number of 1's in the given word including the parity bit
should be odd (1,3,5,....).

Use of Parity Bit
The parity bit can be set to 0 and 1 depending on the type of the parity required.
e For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word

is even. Shown in fig. (a).
o For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is

odd. Shown in fig. (b).

P | Databits —,| P | Databits —,|

01001011 1 1001011
Fig. (a)

P | Databits P |« Databits]

1 1001011 0 1000110
Fig. (b)

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error if the parity of the receiver
signal is different from the expected parity. That means, if it is known that the parity of the
transmitted signal is always going to be "even" and if the received signal has an odd parity,
then the receiver can conclude that the received signal is not correct. If an error is detected,
then the receiver will ignore the received byte and request for retransmission of the same byte
to the transmitter.

|«— Data bits |

o 1001011

R

Transmitted
code

Error

Received code

. o 0001011
with one error

Cyclic Codes

The cyclic property of code words is that any cyclic-shift of a code word is also a code
word. Cyclic codes follow this cyclic property.

For a linear code C, if every code word i.e., C = Cy, C2,......C, C41,Cy,......C from C has a
cyclic right shift of components, it becomes a code word. This shift of right is equal to n-
1 cyclic left shifts. Hence, it is invariant under any shift. So, the linear code C, as it is
invariant under any shift, can be called as a cyclic code.

Cyclic codes are used for error correction. They are mainly used to correct double errors and
burst errors.

Hence, these are a few error correcting codes, which are to be detected at the receiver. These
codes prevent the errors from getting introduced and disturb the communication. They also
prevent the signal from getting tapped by unwanted receivers.

Binary arithmetic is essential part of all the digital computers and many other digital system.
Binary Addition

It is a key for binary subtraction, multiplication, division. There are four rules of binary
addition.

Case | A + B Sum Carry
1 0 + 0 0 0
2 0 + 1 1 0
3 1 + 0 1 0
4 1 =% 1 0 1

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given
column and a carry of 1 over to the next column.

Example — Addition
0011010 + 001100 =00100110 13 carry
0011010 =260

+0001100 =121

010011 0 =381

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary
subtraction. There are four rules of binary subtraction.

Case A - B | Subtract |Borrow
1 0o - 0 0 0
2 ¥ = 0 1 0
3 1 =T] 0 0
4 o - 1 0 51

Example — Subtraction
0011010 - 001100 =00001110 . borrow
0033010 =261

-0001100 =121

0001110 =144

Binary Multiplication

Binary multiplication is similar to decimal multiplication. It is simpler than decimal
multiplication because only Os and 1s are involved. There are four rules of binary

multiplication.

Case 7L Multiplication
1 0 x O 0
2 0: x 1 0
3 1= %) 0
4 3 % 1 1

Example — Multiplication
Example:

0011010 x 001100 =100111000
0011010 =261

x0001100 =12

0000000
0000000
0011010
0011010
0100111000 =312

Binary Division
Binary division is similar to decimal division. It is called as the long division procedure.
Example — Division

101010 /000110 = 000111
111 =710

000110)—110 1010 =42

-110 =610

1b01
-110

110
-110
0

Octal Number System
Following are the characteristics of an octal number system.

e Uses eight digits, 0,1,2,3,4,5,6,7.

e Also called base 8 number system.
« Each position in an octal number represents a 0 power of the base (8). Example: 8°

o Last position in an octal number represents an x power of the base (8). Example:
8 where x represents the last position - 1.

Example
Octal Number — 12570g

Calculating Decimal Equivalent —

Step Octal Number Decimal Number

Step1l 12570g (1 x 8%+ (2% 8%+ (5x8%) + (7 %8+ (0x 8%
Step2 12570g (4096 + 1024 + 320 + 56 + 0)1o

Step3 12570s 549610

Note — 12570g is normally written as 12570.

Octal Addition
Following octal addition table will help you to handle octal addition.

+ 01234567}A
0|0 12 3 45 6 7

1 (12 2 3 45 6 7 10

2 |2 3 4 5 6 7 10 11

3 [34 5 6 7 10 11 17

4 |4 5 6 7 10 11 12 13| [Sum
5 |5 6 7 10 11 12 13 14

6 | 6 7 10 11 12 13 14 15

7 | 7 10 11 12 13 14 15 16
v

B

To use this table, simply follow the directions used in this example: Add 65 and 5g. Locate 6
in the A column then locate the 5 in the B column. The point in 'sum' area where these two
columns intersect is the 'sum’ of two numbers.

6g + 55 = 13s.

Example — Addition

4568 + 1232 = 601z 11 carry

456 =302w
+123 = 8310

601 =385w

Octal Subtraction

The subtraction of octal numbers follows the same rules as the subtraction of numbers in any
other number system. The only variation is in borrowed number. In the decimal system, you

borrow a group of 101¢. In the binary system, you borrow a group of 21,. In the octal system
you borrow a group of 81.

Example — Subtraction
Example:

4563-1732= 333z 8 borrow

3456 =302
-173 =193

263 =179%m0
Hexadecimal Number System

Following are the characteristics of a hexadecimal number system.

Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

o Letters represents numbers starting from 10. A =10, B =11, C =12, D = 13, E = 14,
F=15.

o Also called base 16 number system.

Each position in a hexadecimal number represents a 0 power of the base (16).
Example — 16°

Last position in a hexadecimal number represents an x power of the base (16).
Example — 16* where x represents the last position - 1.

Example
Hexadecimal Number — 19FDE 4
Calculating Decimal Equivalent —

Step Hexadecimal

Decimal Number
Number

Step1 19FDEg (1 x 16%) + (9 x 16%) + (F x 16%) + (D x 16%) + (E
x 16%)10

Step2 19FDEgg ((1 x 16%) + (9 x 16%) + (15 x 16%) + (13 x 16%) +
(14 x 16%)10

Step3 19FDE;s (65536 + 36864 + 3840 + 208 + 14)1,
Step 4 19FDEgs 10646219

Note — 19FDE;s is normally written as 19FDE.
Hexadecimal Addition
Following hexadecimal addition table will help you greatly to handle Hexadecimal addition.

Ear }x

EZE

[
N
w
~
w
(<)]
~
00
(Yo
o]

mm g (w]

10 11
10 11 12
1011 12 13
10 1112 13 14
10 11 1213 14 15
1011 12 13 14 15 16
10 1112 13 1415 16 17
10 11 1213 14 1516 17 18
10 11 12 1314 15 1617 18 19
10 11 12 13 1415 16 17 18 19 1A
10 1112 13 14 1516 17 1819 1A 1B
E 10 11 1213 14 15 1617 18 19 1A 1B 1C
F 10 11 12 1314 15 16 17 18 19 1A1B 1C 1D
10 11 12 13 1415 16 17 18 19 1A 1B1C 1D 1E

MTMOO®E>W0 o0~

MTMOOm> WO o
TmTMmOoONw> =

mTMmMOoO N W
Mmoo (@]

. Sum

MTMOO@>WE~NON - W
TMOOm>WONO U
MTMOOmD> WL~ W
MMOO®@> VNN

1
2
3
4
5
6
7
8
9
A
B
C
D

TMOoOO@m>PLVUONOONEWNRO @
TMOOm> WU _EWN

-<{ MTMOOm>OLONOTUE_EWNRELO |+

To use this table, simply follow the directions used in this example — Add Ajgand 5.
Locate A in the X column then locate the 5 in the Y column. The point in 'sum' area where
these two columns intersect is the sum of two numbers.

Ass + 516 = Fig.
Example — Addition
4Ab1e + 1B316 = 65916 1 carry
4A6 =1190w0
+1B3 = 4351

659 =162510

Hexadecimal Subtraction

The subtraction of hexadecimal numbers follow the same rules as the subtraction of numbers
in any other number system. The only variation is in borrowed number. In the decimal

system, you borrow a group of 104,. In the binary system, you borrow a group of 2. In the
hexadecimal system you borrow a group of 161o.

Example - Subtraction

4A616-1B316 = 2F316 16 borrow
34A6 =1190w

-1B3 = 43510

2F3 =755

Unsigned and Signed Binary Numbers

Variables such as integers can be represent in two ways, i.e., signed and unsigned. Signed
numbers use sign flag or can be distinguish between negative values and positive values.
Whereas unsigned numbers stored only positive numbers but not negative numbers.

Number representation techniques like: Binary, Octal, Decimal and Hexadecimal number
representation techniques can represent numbers in both signed and unsigned ways. Binary
Number System is one the type of Number Representation techniques. It is most popular and
used in digital systems. Binary system is used for representing binary quantities which can be
represented by any device that has only two operating states or possible conditions. For
example, a switch has only two states: open or close.

In the Binary System, there are only two symbols or possible digit values, i.e., 0 and 1.
Represented by any device that only 2 operating states or possible conditions. Binary
numbers are indicated by the addition of either a Ob prefix or a 2 suffix.

Representation of Binary Numbers:

Binary numbers can be represented in signed and unsigned way. Unsigned binary numbers do
not have sign bit, whereas signed binary numbers uses signed bit as well or these can be
distinguishable between positive and negative numbers. A signed binary is a specific data
type of a signed variable.

Binary Number
Representation

Only for For both Positive and
Positive Numbers - Negative Numbers
Unsigned Signed
Representation Representation
Unambiguous
(only one 0) 1
~
Sign-Magnitude 1's complement 2's complement
form form form
Ambiguous Ambiguous Unambiguous
(two 0's) (two 0's) (only one 0)

1. Unsigned Numbers:

Unsigned numbers don’t have any sign, these can contain only magnitude of the number. So,
representation of unsigned binary numbers are all positive numbers only. For example,
representation of positive decimal numbers are positive by default. We always assume that
there is a positive sign symbol in front of every number.

Representation of Unsigned Binary Numbers:

Since there is no sign bit in this unsigned binary number, so N bit binary number represent its
magnitude only. Zero (0) is also unsigned number. This representation has only one zero (0),
which is always positive. Every number in unsigned number representation has only one
unique binary equivalent form, so this is unambiguous representation technique. The range of
unsigned binary number is from 0 to (2"-1).

Example-1: Represent decimal number 92 in unsigned binary number.

Simply convert it into Binary number, it contains only magnitude of the given number.
= (92)10

= (Ix2%+0x2°+1x2*+1x2%+1x2%+0x 2" +0x2%)1
= (1011100),

It’s 7 bit binary magnitude of the decimal number 92.

Example-2: Find range of 5 bit unsigned binary numbers. Also, find minimum and
maximum value in this range.

Since, range of unsigned binary number is from 0 to (2"-1). Therefore, range of 5 bit
unsigned binary number is from 0 to (2°-1) which is equal from minimum value 0 (i.e.,
00000) to maximum value 31 (i.e., 11111).

2. Signed Numbers:

Signed numbers contain sign flag, this representation distinguish positive and negative
numbers. This technique contains both sign bit and magnitude of a number. For example, in
representation of negative decimal numbers, we need to put negative symbol in front of given
decimal number.

Representation of Signed Binary Numbers:

There are three types of representations for signed binary numbers. Because of extra signed
bit, binary number zero has two representation, either positive (0) or negative (1), so
ambiguous representation. But 2’s complementation representation is unambiguous
representation because of there is no double representation of number 0. These are: Sign-
Magnitude form, 1’s complement form, and 2’s complement form which are explained as
following below.

(a) Sign-Magnitude form:

For n bit binary number, 1 bit is reserved for sign symbol. If the value of sign bit is 0, then
the given number will be positive, else if the value of sign bit is 1, then the given number will
be negative. Remaining (n-1) bits represent magnitude of the number. Since magnitude of
number zero (0) is always 0, so there can be two representation of number zero (0), positive
(+0) and negative (-0), which depends on value of sign bit. Hence these representations are
ambiguous generally because of two representation of number zero (0). Generally sign bit is a
most significant bit (MSB) of representation. The range of Sign-Magnitude form is from (2™
D.1) to (20D-1).

For example, range of 6 bit Sign-Magnitude form binary number is from (2°-1) to (2°-1)
which is equal from minimum value -31 (i.e., 1 11111) to maximum value +31 (i.e.,, O
11111). And zero (0) has two representation, -0 (i.e., 1 00000) and +0 (i.e., 0 00000).

(b) 1’s complement form:

Since, 1’s complement of a number is obtained by inverting each bit of given number. So, we
represent positive numbers in binary form and negative numbers in 1’s complement form.
There is extra bit for sign representation. If value of sign bit is 0, then number is positive and
you can directly represent it in simple binary form, but if value of sign bit 1, then number is
negative and you have to take 1’s complement of given binary number. You can get negative
number by 1’s complement of a positive number and positive number by using 1’s
complement of a negative number. Therefore, in this representation, zero (0) can have two
representation, that’s why 1’s complement form is also ambiguous form. The range of 1’s
complement form is from (2"%-1) to (2"*-1) .

For example, range of 6 bit 1’s complement form binary number is from (2°-1) to (2°-1)
which is equal from minimum value -31 (i.e., 1 00000) to maximum value +31 (i.e.,, O
11111). And zero (0) has two representation, -0 (i.e., 1 11111) and +0 (i.e., 0 00000).

(¢) 2’s complement form:

Since, 2’s complement of @ number is obtained by inverting each bit of given number plus 1
to least significant bit (LSB). So, we represent positive numbers in binary form and negative
numbers in 2’s complement form. There is extra bit for sign representation. If value of sign
bit is 0, then number is positive and you can directly represent it in simple binary form, but if
value of sign bit 1, then number is negative and you have to take 2’s complement of given
binary number. You can get negative number by 2’s complement of a positive number and
positive number by directly using simple binary representation. If value of most significant
bit (MSB) is 1, then take 2’s complement from, else not. Therefore, in this representation,
zero (0) has only one (unique? representation which is always positive. The range of 2’s
complement form is from (2""Y) to (20*1-1).

For example, range of 6 bit 2’s complement form binary number is from (2°) to (2°-1) which

is equal from minimum value -32 (i.e., 1 00000) to maximum value +31 (i.e., 0 11111). And
zero (0) has two representation, -0 (i.e., 1 11111) and +0 (i.e., 0 00000).

Logic Gates

Logic gates are the basic building blocks of any digital system. It is an electronic circuit
having one or more than one input and only one output. The relationship between the input

and the output is based on a certain logic. Based on this, logic gates are named as AND gate,
OR gate, NOT gate etc.

AND Gate

A circuit which performs an AND operation is shown in figure. It has n input (n >= 2) and
one outpult.

Y = AANDBAND C....... N
Y = AB.C..... N
Y = ABC....... N

Logic diagram

A—1 .
—
B ——
Truth Table
Eputs Output
A B AB
o} SO o
(8] 1 0
71 (o} o
1 1 1
OR Gate

A circuit which performs an OR operation is shown in figure. It has n input (n >= 2) and one
output.

Y
Y

"n n
> >
00
w D
+
O O
- -
e
2

Logic diagram

Truth Table

Inputs Output
A| B |A+B
0j0 | 0
0 | -1 1
¥ |10 1
Tl 1
NOT Gate

NOT gate is also known as Inverter. It has one input A and one output Y.

<
|

NOTA
Y = A

Logic diagram

[\\1) Y

Truth Table

Inputs | Output

A B
0 1

1 0

NAND Gate

A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and one output.

ANOTANDBNOTANDC....... N
A NAND B NANDC........ N

Y
Y

Logic diagram

A — (B I\\\ s A = \
B‘_____,) L//L : B ,j___y

Truth Table

Inputs Output
A B AB
(o} (o} 1
o 1 1
1 o} 1
—1 1 o
NOR Gate

A NOT-OR operation is known as NOR operation. It has n input (n >= 2) and one output.

ANOTORBNOTORC....... N
Y = ANORBNORC....... N

<
]

Logic diagram

A =S . A
s —F P B —=~ "

Truth Table
Inputs Output
A| B |AB
0| O 1
g %) 0
1|0 0
110

XOR Gate

XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder and
subtractor. The exclusive-OR gate is abbreviated as EX-OR gate or sometime as X-OR gate.
It has n input (n >= 2) and one output.

I
p=
X
O
S
w
x
@]
»
@]
2

Y
Y

0
o

Logic diagram

‘| »‘ 3 A Y
B — A
Truth Table
Inputs Output
A B AQ+ B
0 0 0
o 1 1
71 (0] 1
A 1 (0]
XNOR Gate

XNOR gate is a special type of gate. It can be used in the half adder, full adder and
subtractor. The exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-NOR
gate. It has n input (n >= 2) and one output.

Y = AXORBXORC...... N
Y = AQOBQOC......N
Y = "AB+AB

Logic diagram

A T

\ \C) Y

B —/

Boolean Algebra

Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the
binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean
algebra was invented by George Boole in 1854.

Rule in Boolean Algebra
Following are the important rules used in Boolean algebra.
« Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.
o Complement of a variable is represented by an overbar (-). Thus, complement of

variable B is represented & as.ThusifB=0then =1and B =1then & =0.
e ORing of the variables is represented by a plus (+) sign between them. For example

ORing of A, B, Cis represented as A + B + C.
o Logical ANDing of the two or more variable is represented by writing a dot between
them such as A.B.C. Sometime the dot may be omitted like ABC.
Boolean Laws
There are six types of Boolean Laws.

Commutative law

Any binary operation which satisfies the following expression is referred to as commutative
operation.

(i)AB=B.A (ii)A+B=B+A

Commutative law states that changing the sequence of the variables does not have any effect
on the output of a logic circuit.

Associative law

This law states that the order in which the logic operations are performed is irrelevant as their
effect is the same.

(i) (A.B).C=A.(B.C) (i) (A+B)+ C=A+ (B+C)
Distributive law

Distributive law states the following condition.
A(B+C)=AB+A.C

AND law

These laws use the AND operation. Therefore they are called as AND laws.

()A.0=0 (ii)A1=A
(i) A.A=A (iv)A.A=0
OR law

These laws use the OR operation. Therefore they are called as OR laws.

(i(J)A+0=A (iiJ)A+1=1
(i) A+A=A (iVJA+A=1

INVERSION law

This law uses the NOT operation. The inversion law states that double inversion of a variable
results in the original variable itself.

A=A
Simplification Using Algebraic Functions

In this approach, one Boolean expression is minimized into an equivalent expression by
applying Boolean identities.

Problem 1

Minimize the following Boolean expression using Boolean identities —

F(A,B,C)=A'B+BC+BC+AB'C’

Solution
Given,F(A,B,C)=A'B+BC'+BC+AB'C’
Or,F(A,B,C)=A'B+(BC'+BC")+BC+AB'C’
[By idempotent law, BC’ = BC’ + BC’]
Or,F(A,B,C)=A'B+(BC+BC)+(BC'+AB'C’)
Or,F(A,B,C)=A’B+B(C"+C)+C'(B+AB’)
[By distributive laws]
Or,F(A,B,C)=A'B+B.1+C'(B+A)

[(C'+ C) =1 and absorption law (B + AB")= (B + A)]
Or,F(A,B,C)=A'B+B+C’'(B+A)

[B1=B]

Or,F(A,B,C)=B(A"+1)+C'(B+A)
Or,F(A,B,C)=B.1+C(B+A)

[(A'+1)=1]

Or,F(A,B,C)=B+C’'(B+A)

[As,B.1=B]

Or,F(A,B,C)=B+BC'+AC

Or,F(A,B,C)=B(1+C")+AC’
Or,F(A,B,C)=B.1+AC’
[As, (1+C)=1]
Or,F(A,B,C)=B+AC’

[As, B.1=B]
So,F(A,B,C)=B+AC’

is the minimized form.
Problem 2

Minimize the following Boolean expression using Boolean identities —

F(A,B,C)=(A+B)(A+C)

Solution

Given, F(A,B,C)=(A+B)(A+C)
Or, F(A,B,C)=A.A+A.C+B.A+B.C
[Applying distributive Rule]

Or, F(A,B,C)=A+A.C+B.A+B.C
[Applying Idempotent Law]

Or, F(A,B,C)=A(1+C)+B.A+B.C
[Applying distributive Law]

Or, F(A,B,C)=A+B.A+B.C
[Applying dominance Law]

Or, F(A,B,C)=(B+1).A+B.C
[Applying distributive Law]

Or, F(A,B,C)=1.A+B.C
[Applying dominance Law]

Or, F(A,B,C)=A+B.C

[Applying dominance Law]

So, F(A,B,C)=A+BC

is the minimized form.

Karnaugh Maps

The Karnaugh map (K-map), introduced by Maurice Karnaughin in 1953, is a grid-like
representation of a truth table which is used to simplify boolean algebra expressions. A
Karnaugh map has zero and one entries at different positions. It provides grouping together
Boolean expressions with common factors and eliminates unwanted variables from the
expression. In a K-map, crossing a vertical or horizontal cell boundary is always a change of
only one variable.

Example 1

An arbitrary truth table is taken below —

A B Aoperation B

0 0 w
0 1 x
1 0 vy
1 1 z

Now we will make a k-map for the above truth table —

B
A 0 1
0 W X
1 y z
Example 2

Now we will make a K-map for the expression — AB+ A’B’

A 0 1
0 1 0
1 0 1

Simplification Using K-map

K-map uses some rules for the simplification of Boolean expressions by combining together
adjacent cells into single term. The rules are described below —

Rule 1 — Any cell containing a zero cannot be grouped.

BC

A 00 01 11 10
0 1 0 1 0
1 0 1 1 1

Wrong grouping

Rule 2 — Groups must contain 2n cells (n starting from 1).

BC

A 00 01 11 10
0 1 0 1 0
1 o |[1 1 1

Wrong grouping
Rule 3 — Grouping must be horizontal or vertical, but must not be diagonal.

BC
A 00 01 11 10

0 1 1 1 0
1 0 0 s 1

Wrong diagonal grouping

BC
A 00 01 11 10

1
1 0 0 1 1

Proper vertical grouping

BC
A 00 01 11 10

0 1 1 1 0

e [|G

Proper horizontal grouping

Rule 4 — Groups must be covered as largely as possible.

BC
A 00 01 11 10

0 1 0 1 0

1 1 1][]t 1

Insufficient grouping

BC
A 00 01 11 10
0 1 0 1 0
1 |1 1 1 1

Proper grouping

Rule 5 —If 1 of any cell cannot be grouped with any other cell, it will act as a group itself.

BC

Proper grouping

Rule 6 — Groups may overlap but there should be as few groups as possible.

BC
00 01 11 10

0 0 0 1 1

1 [1 1 1 1

Proper grouping

Rule 7 — The leftmost cell/cells can be grouped with the rightmost cell/cells and the topmost
cell/cells can be grouped with the bottommost cell/cells.

BC
A 00 01 11 10
0 1 0 0 1
1 1 0 0 1

Proper grouping
Problem
Minimize the following Boolean expression using K-map —

F(A,B,C)=A'BC+A'BC'+AB'C'+AB'C

Solution

Each term is put into k-map and we get the following —

BC
A 00 01 11 10
0 0 0 1 1
1 1 1 0 0

K-map for F (A, B, C)

Now we will group the cells of 1 according to the rules stated above —

BC
A 00 01 11 10

o | o [o | E 113
] e [

K-map for F (A, B, C)

We have got two groups which are termed as A'B

and AB'. Hence, F(A,B,C)=A'B+AB'=A@B. It is the minimized form.
5 variable K-Map in Digital Logic

Prerequisite Implicant in K-Map

Karnaugh Map or K-Map is an alternative way to write truth table and is used for the
simplification of Boolean Expressions. So far we are familiar with 3 variable K-Map & 4
variable K-Map. Now, let us discuss the 5-variable K-Map in detail.

Any Boolean Expression or Function comprising of 5 variables can be solved using the 5

variable K-Map. Such a 5 variable K-Map must contain = 32 cells . Let the 5-variable
Boolean function be represented as :

f(PQRST)where P, Q,R, S, T are the variables and P is the most significant bit variable
and T is the least significant bit variable.

The structure of such a K-Map for SOP expression is given below :

ST o 01 1 10 ST 00 01 1 10
QR QR
00 00
01 01
1" 11
10 10
P=0 P=1

The cell no. written corresponding to each cell can be understood from the example described
here:

11

01

P=0

Here for variable P=0, we have Q =0, R =1, S =1, T =1 i.e. (PQRST)=(00111) . In
decimal form, this is equivalent to 7. So, for the cell shown above the corresponding cell no.
= 7. In a similar manner, we can write cell numbers corresponding to every cell as shown in
the above figure.
Now let us discuss how to use a 5 variable K-Map to minimize a Boolean Function.

Rules to be followed :

https://www.geeksforgeeks.org/digital-logic-implicants-k-map/
https://www.geeksforgeeks.org/k-mapkarnaugh-map/

1. If afunction is given in compact canonical SOP(Sum of Products) form then we write
“1” corresponding to each minterm (provided in the question) in the corresponding
cell numbers. For eg: For we will write “1” corresponding to cell numbers (0, 1, 5, 7,
30 and 31).

2. Ifafunction is given in compact canonical POS(Product of Sums) form then we write
“0” corresponding to each maxterm (provided in the question) in the corresponding
cell numbers. For eg: For we will write “0” corresponding to cell numbers (0, 1, 5, 7,
30 and 31).

Steps to be followed :

1. Make the largest possible size subcube covering all the marked 1°s in case of SOP or
all marked 0’s in case of POS in the K-Map. It is important to note that each subcube
can only contain terms in powers of 2 . Also a subcube of cells is possible if and

only if in that subcube for every cell we satisfy that “m” number of cells are adjacent
cells .

2. All Essential Prime Implicants (EPIs) must be present in the minimal expressions.

I. Solving SOP function —

For clear understanding, let us solve the example of SOP function minimization of 5 Variable
K-Map using the following expression:

ST o0 01 1,10 §T oo 01 1" 10
o ﬂ \C ﬂ "
o AE ®
"L i
S I Vs s LS K EN

| K | \

P=0 P=1
In the above K-Map we have 4 subcubes:

Subcube 1: The one marked in red comprises of cells (0, 4, 8, 12, 16, 20, 24, 28)
Subcube 2: The one marked in blue comprises of cells (7, 23)

Subcube 3: The one marked in pink comprises of cells (0, 2, 8, 10, 16, 18, 24, 26)
Subcube 4: The one marked in yellow comprises of cells (24, 25, 26, 27)

I1. Solving POS function —
Now, let us solve the example of POS function minimization of 5 Variable K-Map using the
following expression:

S+T po 01 11 | 10 $+T 00 01 11, 10

Q+R 0 1 3 2| Q+R 16 17 19 18
00 0 00 0

23 22

12 13 15 14 28 29 31 30
11 \ 0
. 8 9 11 10 —_i 24 25 27 26
10 w ﬁ\ 100\ OA 0 0 0 Y
N~
1 k ‘
P=0 P=1

In the above K-Map we have 4 subcubes:

e Subcube 1: The one marked in red comprises of cells (0, 4, 8, 12, 16, 20, 24, 28)
e Subcube 2: The one marked in blue comprises of cells (7, 23)

e Subcube 3: The one marked in pink comprises of cells (0, 2, 8, 10, 16, 18, 24, 26)
e Subcube 4: The one marked in yellow comprises of cells (24, 25, 26, 27)

